plc的主要特点。plc的特点是:工作可靠、运行速度快、积木式结构、组合灵活、良好的兼容性、程序编制及生成简单、丰富、网络功能强。
(2)plc的主要功能。plc系统能很好的完成工业实时顺序控制、条件控制、记数控制、步进控制等功能;能够完成模/数(a/d)、数/模(d/a)转换、数据处理、通讯联网、实时等功能。
多年的实践表明,plc耐用、可靠,是专为工厂设计的,具有根据工作环境要求加固的元件,实时扫描实践及故障诊断功能,故障排除简便,深得用户偏爱。
plc如此可靠的原因是一个可执行继电器逻辑、顺序功能图、功能块、结构文本、命令目录或其组合的实时核心或操作系统。若出现故障,其内置安全装置能保持机械受损,且能保持有序、有预见的顺序。
2.4 plc的发展趋势
有快的逻辑运算和强的逻辑控制、顺序控制能力,在离散控制中有**的可靠性,方便简单易学的编程方法,使其在以离散为主的工业自动化领域中有无可争议的地位。
**工业计算机控制领域,围绕开放与再开放过程控制系统、开放式过程控制软件、开放性数据通信协议,已经发生巨大变革,几乎到处都有plc,但这种趋势也许不会继续发展下去。随着软plc(softplc)控制组态软件技术的诞生与进一步完善和发展,安装有softplc组态软件和基于工业pc控制系统的市场份额正在逐步得到增长,这些事实使传统plc供应商在思想上已经发生了戏剧性的变化,他们必须面对现实,在传统plc的技术发展与提高方面做出加开放的高姿态。对于控制软件来讲,这是plc控制器的核心,plc供应商正在向工业用户提供开放式的编程组态工具软件,而且对于工业用户表现得非常积。此外,开放式通信网络技术也得到了突破,其结果是将plc融入加开放的工业控制行业。
PLC的选型方法
在PLC系统设计时,首先应确定控制方案,下一步工作就是PLC工程设计选型。工艺流程的特点和应用要求是设计选型的主要依据。PLC及有关设备应是集成的、标准的,按照易于与工业控制系统形成一个整体,易于扩充其功能的原则选型所选用PLC应是在相关工业领域有投运业绩、成熟可靠的系统,PLC的系统硬件、软件配置及功能应与装置规模和控制要求相适应。熟悉可编程序控制器、功能表图及有关的编程语言有利于缩短编程时间,因此,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据控制要求,估算输入输出点数、所需存储器容量、确定PLC的功能、外部设备特性等,后选择有较高性能价格比的PLC和设计相应的控制系统。
一、输入输出(I/O)点数的估算
I/O点数估算时应考虑适当的余量,通常根据统计的输入输出点数,再增加10%~20%的可扩展
余量后,作为输入输出点数估算数据。实际订货时,还需根据制造厂商PLC的产品特点,对输入输出点数进行圆整。
二、存储器容量的估算
存储器容量是可编程序控制器本身能提供的硬件存储单元大小,程序容量是存储器中用户应用项目使用的存储单元的大小,因此程序容量小于存储器容量。设计阶段,由于用户应用程序还未编制,因此,程序容量在设计阶段是未知的,需在程序调试之后才知道。为了设计选型时能对程序容量有一定估算,通常采用存储器容量的估算来替代。
存储器内存容量的估算没有固定的公式,许多文献资料中给出了不同公式,大体上都是按数字量I/O点数的10~15倍,加上模拟I/O点数的100倍,以此数为内存的总字数(16位为一个字),另外再按此数的25%考虑余量。
三、控制功能的选择
该选择包括运算功能、控制功能、通信功能、编程功能、诊断功能和处理速度等特性的选择。
运算功
简单PLC的运算功能包括逻辑运算、计时和计数功能;普通PLC的运算功能还包括数据移位、比较等运算功能;较复杂运算功能有代数运算、数据传送等;大型PLC中还有模拟量的PID运算和其他运算功能。随着开放系统的出现,目前在PLC中都已具有通信功能,有些产品具有与下位机的通信,有些产品具有与同位机或上位机的通信,有些产品还具有与工厂或企业网进行数据通信的功能。设计选型时应从实际应用的要求出发,合理选用所需的运算功能。大多数应用场合,只需要逻辑运算和计时计数功能,有些应用需要数据传送和比较,当用于模拟量检测和控制时,才使用代数运算,数值转换和PID运算等。要显示数据时需要译码和编码等运算。
(二)控制功能
控制功能包括PID控制运算、前馈补偿控制运算、比值控制运算等,应根据控制要求确定。PLC主要用于顺序逻辑控制,因此,大多数场合常采用单回路或多回路控制器解决模拟量的控制,有时也采用的智能输入输出单元完成所需的控制功能,提高PLC的处理速度和节省存储器容量。例如采用PID控制单元、高速计数器、带速度补偿的模拟单元、ASC码转换单元等。
(三)通信功能
大中型PLC系统应支持多种现场总线和标准通信协议(如TCP/IP),需要时应能与工厂管理网(TCP/IP)相连接。通信协议应符合ISO/IEEE通信标准,应是开放的通信网络。
PLC系统的通信接口应包括串行和并行通信接口(RS2232C/422A/423/485)、RIO通信口、工业以太网、常用DCS接口等;大中型PLC通信总线(含接口设备和电缆)应1:1冗余配置,通信总线应符合标准,通信距离应满足装置实际要求
PLC系统的通信网络中,上级的网络通信速率应大于1Mbps,通信负荷不大于60%。PLC系统的通信网络主要形式有下列几种形式:1)PC为主站,多台同型号PLC为从站,组成简易PLC网络;2)1台PLC为主站,其他同型号PLC为从站,构成主从式PLC网络;3)PLC网络通过特定网络接口连接到大型DCS中作为DCS的子网;4)PLC网络(各厂商的PLC通信网络)。
为减轻CPU通信任务,根据网络组成的实际需要,应选择具有不同通信功能的(如点对点、现场总线、工业以太网)通信处理器。
编程功能
离线编程方式:PLC和编程器公用一个CPU,编程器在编程模式时,CPU只为编程器提供服务,不对现场设备进行控制。完成编程后,编程器切换到运行模式,CPU对现场设备进行控制,不能进行编程。离线编程方式可降低系统成本,但使用和调试不方便。在线编程方式:CPU和编程器有各自的CPU,主机CPU负责现场控制,并在一个扫描周期内与编程器进行数据交换,编程器把在线编制的程序或数据发送到主机,下一扫描周期,主机就根据新收到的程序运行。这种方式成本较高,但系统调试和操作方便,在大中型PLC中常采用。
五种标准化编程语言:顺序功能图(SFC)、梯形图(LD)、功能模块图(FBD)三种图形化语言和语句表(IL)、结构文本(ST)两种文本语言。选用的编程语言应遵守其标准(IEC6113123),同时,还应支持多种语言编程形式,如C,Basic等,以满足控制场合的控制要求。
(五)诊断功能
PLC的诊断功能包括硬件和软件的诊断。硬件诊断通过硬件的逻辑判断确定硬件的故障位置,软件诊断分内诊断和外诊断。通过软件对PLC内部的性能和功能进行诊断是内诊断,通过软件对PLC的CPU与外部输入输出等部件信息交换功能进行诊断是外诊断。
PLC的诊断功能的强弱,直接影响对操作和维护人员技术能力的要求,并影响平均维修时间。
(六)处理速度
PLC采用扫描方式工作。从实时性要求来看,处理速度应越快越好,如果信号持续时间小于扫描时间,则PLC将扫描不到该信号,造成信号数据的丢失。
处理速度与用户程序的长度、CPU处理速度、软件质量等有关。目前,PLC接点的响应快、速度高,每条二进制指令执行时间约0.2~0.4Ls,因此能适应控制要求高、相应要求快的应用需要。扫描周期(处理器扫描周期)应满足:小型PLC的扫描时间不大于0.5ms/K;大中型PLC的扫描时间不大于0.2ms/K。
机型的选择
(一)PLC的类型
PLC按结构分为整体型和模块型两类,按应用环境分为现场安装和控制室安装两类;按CPU字长分为1位、4位、8位、16位、32位、64位等。从应用角度出发,通常可按控制功能或输入输出点数选型。
整体型PLC的I/O点数固定,因此用户选择的余地较小,用于小型控制系统;模块型PLC提供多种I/O卡件或插卡,因此用户可较合理地选择和配置控制系统的I/O点数,功能扩展方便灵活,一般用于大中型控制系统。
(二)输入输出模块的选择
输入输出模块的选择应考虑与应用要求的统一。例如对输入模块,应考虑信号电平、信号传输距离、信号隔离、信号供电方式等应用要求。对输出模块,应考虑选用的输出模块类型,通常继电器输出模块具有价格低、使用电压范围广、寿命短、响应时间较长等特点;可控硅输出模块适用于开关频繁,电感性低功率因数负荷场合,但价格较贵,过载能力较差。输出模块还有直流输出、交流输出和模拟量输出等,与应用要求应一致。
可根据应用要求,合理选用智能型输入输出模块,以便提高控制水平和降低应用成本。
考虑是否需要扩展机架或远程I/O机架等。
(三)电源的选择
PLC的供电电源,除了引进设备时同时引进PLC应根据产品说明书要求设计和选用外,一般PLC的供电电源应设计选用220VAC电源,与国内电网电压一致。重要的应用场合,应采用不间断电源或稳压电源供电。
如果PLC本身带有可使用电源时,应核对提供的电流是否满足应用要求,否则应设计外接供电电源。为防止外部高压电源因误操作而引入PLC,对输入和输出信号的隔离是必要的,有时也可采用简单的二管或熔丝管隔离。
(四)存储器的选择
由于计算机集成芯片技术的发展,存储器的价格已下降,因此,为保证应用项目的正常投运,一般要求PLC的存储器容量,按256个I/O点至少选8K存储器选择。需要复杂控制功能时,应选择容量大,档次高的存储器。
西门子S7-1200系列订货数据
6ES7211-1BE31-0XB0 CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI
6ES7211-1AE31-0XB0 CPU 1211C DC/DC/DC,6输入/4输出,集成2AI
6ES7211-1HE31-0XB0 CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI
6ES7212-1BE31-0XB0 CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI
6ES7212-1AE31-0XB0 CPU 1212C DC/DC/DC,8输入/6输出,集成2AI
6ES7212-1HE31-0XB0 CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI
6ES7214-1BG31-0XB0 CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI
6ES7214-1AG31-0XB0 CPU 1214C DC/DC/DC,14输入/10输出,集成2AI
6ES7214-1HG31-0XB0 CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI
6ES7215-1BG31-0XB0 CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO
6ES7215-1AG31-0XB0 CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO
6ES7215-1HG31-0XB0 CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO
6ES7211-1BE40-0XB0 CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI
6ES7211-1AE40-0XB0 CPU 1211C DC/DC/DC,6输入/4输出,集成2AI
6ES7211-1HE40-0XB0 CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI
6ES7212-1BE40-0XB0 CPU 1212C DC/DC/DC,8输入/6输出,集成2AI
6ES7212-1HE40-0XB0 CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI
6ES7214-1BG40-0XB0 CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI
6ES7214-1AG40-0XB0 CPU 1214C DC/DC/DC,14输入/10输出,集成2AI
6ES7214-1HG40-0XB0 CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI
6ES7215-1BG40-0XB0 CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO
6ES7215-1AG40-0XB0 CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO
6ES7215-1HG40-0XB0 CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO
6ES7217-1AG40-0XB0 CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO