优点:单片机廉,性可能会强;
缺点:可靠性差、抗干扰性能差、通用性差、扩展能力比较弱、处理能力会弱于PLC(若做大系统复杂的交通灯;
可编程控制器是由现代化生产的需要而产生的,可编程序控制器的分,一般来说可以从三个度对可编程序控制器进行分类。其一是从可编程序控制器的控制规模大小去分类,其二是从可编程序控制器的性能高低去分类,其三是从可编程序控制器的结构特点去分类。
西门子比其它的PLC相比,指令采用功能块!通俗易懂!在模拟量的输出和读取上要简单的多!只需使用传送命令就可以了,模拟量达寄存器在PLC中就相当于一个普通的数据寄存器D,在脉冲输出功能和可设置性强大,适合控制,通信能力强大!扩展能力和适用性强,多的智能模块可以广泛的应用于各种行业,例如称重等等
西门子即可以使用NPN的传感器也可以使用PNP的传感器!适用于改造旧设备,不管以前的设备使用的是何种传感器都能轻松的代替掉!
程序编写采用子程序编写方法!主观容易看懂,对于编程者的编写顺序,手自动程序的编写、某个立的部件编写等等都能清楚清晰的分开来!
1.向高速度、大容量方向发展
为了提高PLC的处理能力,要求PLC具有好的响应速度和大的存储容量。目前,有的PLC的扫描速度可达0.1ms/k步左右。PLC的扫描速度已成为很重要的一个性能指标。
在存储容量方面,有的PLC高可达几十兆字节。为了扩大存储容量,有的公司已使用了磁泡存储器或硬盘。
2.向大型、小型两个方向发展
当前中小型PLC比较多,为了适应市场的多种需要,今后PLC要向多品种方向发展,特别是向大型和小型两个方向发展。现已有I/O点数达14336点的大型PLC,其使用32位微处理器,多CPU并行工作和大容量存储器,功能强。
小型PLC由整体结构向小型模块化结构发展,使配置加灵活,为了市场需要已开发了各种简易、经济的小型微型PLC,小配置的I/O点数为8~16点,以适应单机及小型自动控制的需要,如三菱公司α系列PLC。
3.PLC大力开发智能模块,加强联网通信能力
为满足各种自动化控制系统的要求,近年来不断开发出许多功能模块,如高速计数模块、温度控制模块、远程I/O模块、通信和人机接口模块等。这些带CPU和存储器的智能I/O模块,既扩展了PLC功能,又使用灵活方便,扩大了PLC应用范围。
加强PLC联网通信的能力,是PLC技术进步的潮流。PLC的联网通信有两类:一类是PLC之间联网通信,各PLC生产厂家都有自己的专有联网手段;另一类是PLC与计算机之间的联网通信,一般PLC都有**通信模块与计算机通信。为了加强联网通信能力,PLC生产厂家之间也在协商制订通用的通信标准,以构成大的网络系统,PLC已成为集散控制系统(DCS)不可缺少的重要组成部分。
4.增强外部故障的检测与处理能力
根据统计资料表明:在PLC控制系统的故障中,CPU占5%,I/O接口占15%,输入设备占45%,输出设备占30%,线路占5%。**项共20%故障属于PLC的内部故障,它可通过PLC本身的软、硬件实现检测、处理;而其余80%的故障属于PLC的外部故障。因此,PLC生产厂家都致力于研制、发展用于检测外部故障的**智能模块,进一步提高系统的可靠性。
5.编程语言多样化
在PLC系统结构不断发展的同时,PLC的编程语言也越来越丰富,功能也不断提高。除了大多数PLC使用的梯形图语言外,为了适应各种控制要求,出现了面向顺序控制的步进编程语言、面向过程控制的流程图语言、与计算机兼容的高级语言(BASIC、C语言等)等。多种编程语言的并存、互补与发展是PLC进步的一种趋势。
PLC执行程序的过程分为三个阶段,即输入采样阶段、程序执行阶段、输出刷新阶段
1.输入采样阶段
在输入采样阶段,PLC以扫描工作方式按顺序对所有输入端的输入状态进行采样,并存入输入映象寄存器中,此时输入映象寄存器被刷新。接着进入程序处理阶段,在程序执行阶段或其它阶段,即使输入状态发生变化,输入映象寄存器的内容也不会改变,输入状态的变化只有在下一个扫描周期的输入处理阶段才能被采样到。
2.程序执行阶段
在程序执行阶段,PLC对程序按顺序进行扫描执行。若程序用梯形图来表示,则总是按先上后下,先左后右的顺序进行。当遇到程序跳转指令时,则根据跳转条件是否满足来决定程序是否跳转。当指令中涉及到输入、输出状态时,PLC从输入映像寄存器和元件映象寄存器中读出,根据用户程序进行运算,运算的结果再存入元件映象寄存器中。对于元件映象寄存器来说,其内容会随程序执行的过程而变化。
3.输出刷新阶段
当所有程序执行完毕后,进入输出处理阶段。在这一阶段里,PLC将输出映象寄存器中与输出有关的状态(输出继电器状态)转存到输出锁存器中,并通过一定方式输出,驱动外部负载。
因此,PLC在一个扫描周期内,对输入状态的采样只在输入采样阶段进行。当PLC进入程序执行阶段后输入端将被,直到下一个扫描周期的输入采样阶段才对输入状态进行重新采样。这方式称为集中采样,即在一个扫描周期内,集中一段时间对输入状态进行采样。
在用户程序中如果对输出多次赋值,则后一次有效。在一个扫描周期内,只在输出刷新阶段才将输出状态从输出映象寄存器中输出,对输出接口进行刷新。在其它阶段里输出状态一直保存在输出映象寄存器中。这种方式称为集中输出。
对于小型PLC,其I/O点数较少,用户程序较短,一般采用集中采样、集中输出的工作方式,虽然在一定程度上降低了系统的响应速度,但使PLC工作时大多数时间与外部输入/输出设备隔离,从根本上提高了系统的抗干扰能力,增强了系统的可靠性。
而对于大中型PLC,其I/O点数较多,控制功能强,用户程序较长,为提高系统响应速度,可以采用定期采样、定期输出方式,或中断输入、输出方式以及采用智能I/O接口等多种方式。
从上述分析可知,当PLC的输入端输入信号发生变化到PLC输出端对该输入变化作出反应,需要一段时间,这种现象称为PLC输入/输出响应滞后。对一般的工业控制,这种滞后是完全允许的。应该注意的是,这种响应滞后不仅是由于PLC扫描工作方式造成,主要是PLC输入接口的滤波环节带来的输入延迟,以及输出接口中驱动器件的动作时间带来输出延迟,同时还与程序设计有关。滞后时间是设计PLC应用系统时应注意把握的一个参数。
6ES72111BE400XB0 | CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI |
6ES72111AE400XB0 | CPU 1211C DC/DC/DC,6输入/4输出,集成2AI |
6ES72111HE400XB0 | CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI |
6ES72121BE400XB0 | CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI |
6ES72121AE400XB0 | CPU 1212C DC/DC/DC,8输入/6输出,集成2AI |
6ES72121HE400XB0 | CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI |
6ES72141BG400XB0 | CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI |
6ES72141AG400XB0 | CPU 1214C DC/DC/DC,14输入/10输出,集成2AI |
6ES72141HG400XB0 | CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI |
6ES72151BG400XB0 | CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72151AG400XB0 | CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6ES72151HG400XB0 | CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72171AG400XB0 | CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO |