西门子控制器代理
西门子控制器代理
西门子控制器代理
.选择序列的分支的编程方法
图|5-3中步M0.0之后有一个选择序列的分支,设M0,0为活动步,当它的后续步M0.1或M0.2变为活动步时,它都应变为不活动步(M0,0变为0状态),所以应将M0.I和M0.2的常闭触点与M0.0的线圈串联。
如果某一步的后面有一个山N条分支组成的选择序列,该步可能转换到不同的N步去,则应将这N个后续步对应的存储器位的常闭触点与该步的线圈申联,作为结束该步的条件。
2.选择序列的合并的编程方法
图5-3中,步M0.2之前有一个选择序列的合并,当步M0.1为活动步(M0.1为1)并且转换条件I0.1满足,或步M0,0为活动步并且转换条件I0.2满足,步M0.2都应变为活动步,即代表该步的存储器位M0.2的起动条件应为M0.1I0.1 M0.0-10.2,对应的起动电路由两条并联支路组成,每条支路分别由MO.1、10.1和M0.0、I0.2的常开触点申联而成(见图5-4)。
-般来说,对于选择序列的合并,如果某一步之前有N个转换(即有N条分支进人该步),则代表该步的存储器位的起动电路由N条支路并联而成,各支路由某一前级步对应的存储器位的常开触点与相应转换条件对应的触点或电路中联而成。
并行序列的编程方法
1.井行序列的分支的编程方法
图5-3中的步M0.2之后有一个并行序列的分支,当步M0.2是活动步并且.转换条件I03满足时,步M0.3与步M0.5应同时变为活动步,这是用M0.2和I0.3的常开触点组成的串联电路分别作为M0.3和M0.5的起动电路来实现的,与此同时,步M0.2应变为不活动步步M0.3和M0.5是同时变为话动步的,只需将M0.3或M0.5的常闭触点与M0.2的线副串联就行了。
2.并行序列的合并的编程方法
步M0.7之前有一个并行序列的合并,该转换实现的条件是所有的前级步(即步M0.4和M0.6)都是活动步和转换条件I0.6满足。由此可知,应将M0.4,M0.6和I0.6的常开触点串联,作为控制M0.7的起保停电路的起动电路。
任何复杂的顺序功能图都是由单序列、选择序列和并行序列组成的,掌握了单序列的编程方法和选择序列、并行序列的分支、合井的纵程方法,就不难迅来地设计出任意复杂的顺序功能图描述的开关量控制系统的梯形图。
仅有两步的闭环的处理
如果在顺序功能图中有仅由两步组成的小闭环(见图5-5a),用起保停电路设计的梯形图不能正常工作。例如M0.2和I0.2均为1时,M0.3的起动电路接通,但是这时与M03的线圈串联的M0.2的常闭触点却是断开的所以M0.3的线圈不能“通电"。出现上述问题的根本原因在于少M0.2既是步M0.3的前级步,又是它的后续步。在小闭环中增设一步就可以解决这一问题(见图5-5b),这一步只起延时作用,延时时间可以取得很短(如0.1s),对系统的运行不会有什么影响。
图5-5仅有两步的闭坏的处理
可编程序控制器诞生不久即显示了其在工业控制中的重要地位,如日本、德国、法国等国家相继研制成各自的PLC。PLC技术随着计算机和微电子技术的发展而迅速发展,由初的一位机发展为8位机。随着微处理器CPU和微型计算机技术在PLC中的应用,形成了现代意义上的PLC。现在的PLC产品己使用了16位、32位高性能做处理器,而且实现了多处理器的多通道处理,通讯技术使PLC的应用得到进一步发展。如今,可编程序控制器技术已比较成熟。
目前,世界上有200多个厂家生产可编程序控制器产品,比较*的厂家有德国的西门子,美国的Rockwell(AB)、通用(GE),日本的三菱、欧姆龙,法国的施耐德等。
可编程序控制器总的发展趋势是向高集成度、小体积、大容量、高速度、易使用、高性能方向发展。具体表现在以下几个方面:
(1)向小型化、**化、方向发展
20世纪80年代初,小型PLC在价格上还**小系统用的继电器控制装置。随着微电子技术的发展,新型器件大幅度的提高功能和降低价格,使PLC结构为紧凑,功能不断增加,将原来大、中型PLC才有的功能移植到小型PLC上,如模拟量处理、数据通讯和复杂的功能指令等,但价格不断下降,真正成为继电器控制系统的替代产品。
(2)向大容量,高速度方向发展
大型PLC采用多微处理器系统,有的采用32位微处理器,可同时进行多任务操作,处理速度提高,特别是增强了过程控制和数据处理的功能。另外,存储容量大大增加。
(3)与计算机联系密切
从功能上看,PLC不仅能完成逻辑运算,且计算机的复杂运算功能在PLC中也进一步得到利用,从结构上看,计算机的硬件和技术越来越多地应用到PLC;从语言上看,PLC己不再是单纯用梯形图语言,而且可用多种语言编程,如类似计算机汇编语言的语句表,甚至可直接由计算机高级语言编程;在通讯方面,PLC与计算机可直接相连并进行信息传递。
(4)发展多样化
可编程序控制器发展的多样化体现在3个方面:产品类型、编程语言和应用领域。
(5)模块化
PLC的扩展模块发展迅速。功能明确化、**化的复杂功能由专门模块来完成。主机仅仅通过通讯设备向模块发布命令和测试状态,这使得PLC的系统功能进一步增强,控制系统设计进一步简化。
(6)网络与通讯能力增强
计算机与PLC之间以及各个PLC之间的联网和通讯的能力不断增强,使用工业网络可以有效地节省资源、降、提高系统可靠性和灵活性,致使网络的应用有普遍化的趋势。
(7)多样化与标准化
生产PLC产品的各厂家都在大力度地开发自己的新产品,以求占据市场的大份额。因此产品向多样化方向发展,出现了欧、美、日多种流派。与此同时,为了推动技术标准化的进程。一些性组织,如电工**(IEC)不断为PLC的发展制定一些新的标准,如对各种类型的产品作一定的归纳或定义,或对PLC未来的发展制定一种方向或框架。
(8)工业软件发展迅速
与可编程序控制器硬件技术的发展相适应,工业软件的发展非常迅速,它使系统应用加简单易行,大大方便了PLC系统的开发人员和操作使用人员。
6ES72111BE400XB0 | CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI |
6ES72111AE400XB0 | CPU 1211C DC/DC/DC,6输入/4输出,集成2AI |
6ES72111HE400XB0 | CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI |
6ES72121BE400XB0 | CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI |
6ES72121AE400XB0 | CPU 1212C DC/DC/DC,8输入/6输出,集成2AI |
6ES72121HE400XB0 | CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI |
6ES72141BG400XB0 | CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI |
6ES72141AG400XB0 | CPU 1214C DC/DC/DC,14输入/10输出,集成2AI |
6ES72141HG400XB0 | CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI |
6ES72151BG400XB0 | CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72151AG400XB0 | CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6ES72151HG400XB0 | CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72171AG400XB0 | CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO |