除了高度自动化之外,过程和制造业的另一个主要特点是能耗非常高。因此,在现在系统中集成能源管理系统也就理所当然。
SIMATIC powerrate 为用于 WinCC 和 PCS 7 的插件,可以实现配电和能源成本中的透明性和控制功能。
需要将低压配电组件集成至过程和 SA 系统中时,可以使用 PROFIBUS DP 接口和功能块库,例如,用于 SIMATIC WinCC 和 PCS7 的 PAC3200 功能块库。此后,使用软件插件,即可显示相关设备提供的数据,且不需要大量组态工作。
自动化技术领域中的设备数量日益增多促进了 PROFINET 的发展。还有一种交换式以太网 PROFINET 模块,可以用于 7KM PAC3200 和 PAC4200 测量设备。
PROFIenergy 是 PNO 的 "通用应用配置文件" 。借助 PROFIenergy,可以组建带有标准设备接口的能源管理系统。
SIMATIC powerrate 软件是基于 SIMATIC 的能源管理系统的核心,并且是
PCS 7 和 WinCC 的插件,为控制从馈电到负荷的能耗提供了条件。
不间断地收集、归档和处理能源数据
可以创建负荷曲线,并基于准确的负荷曲线知识,找出节能潜力。
监控合同商定的用电限额。
通过批次相关消耗记录准确地记录和评估单个批次的能耗数据。
采用合适的授权,监控或显示开关状态,并实现远程切换。
联机显示已经选定的测量,以及来自 7KM PAC3200 和 PAC4200 测量设备的报文
收集已归档数据,将其导出至 Excel 或者用于各种报表中。
由于负荷曲线中的精确知识,进一步提高了能源效率
优化能源供应合同
将能源费用分配至成本中心
优厂维护
识别出工厂临界条件
通过自动化的负荷管理,可靠在监控用电限额
需要透明地显示和监控功率流,以及必须在过程控制级之上高效的干预时,就可以使用基于 SIMATIC 的能源管理系统。
SIMATIC powerrate 可以应用于使用 PCS 7 或者 WinCC 并且重视能源效率的所有领域。
这种基于 PC 的能源管理系统的硬件组件如下:
7KM PAC 测量设备, 参见“测量设备”
3WL 空气断路器, 参见 “SENTRON 保护、开关、测量和监控设备 > 保护装置> 空气断路器”
3VL 塑壳断路器, 参见 “SENTRON 保护、开关、测量和监控设备 > 保护装置> 塑壳断路器”
SIMATIC powerrate
PCS 7 功能块库 PAC3200
WinCC 功能块库 PAC3200
所有的软件组件,请参阅”低压配电和电气安装技术 > 软件 > 使用 SIMATIC 进行配置、可视化和控制
为了确保整个系统能在安全状态下可靠工作,避免由于外部电源发生故障、PLC出现异常、误操作以及误输出造成的重大经济损失和人身伤亡事故,PLC外部应安装必要的保护电路。
(1)急停电路。对于能使用户造成伤害的危险负载,除了在控制程序中加以考虑之外,还应设计外部紧急停车电路,使得PLC发生故障时,能将引起伤害的负载电源可靠切断。
(2)保护电路。正反向运转等可逆操作的控制系统,要设置外部电器互锁保护;往复运行及升降移动的控制系统,要设置外部限位保护电路。
(3)可编程控制器有监视定时器等自检功能,检查出异常时,输出全部关闭。但当可编程控制器CPU故障时就不能控制输出,因此,对于能使用户造成伤害的危险负载,为确保设备在安全状态下运行,需设计外电路加以防护。
(4)电源过负荷的防护。如果PLC电源发生故障,中断时间少于10秒,PLC工作不受影响,若电源中断过10秒或电源下降过允许值,则PLC停止工作,所有的输出点均同时断开;当电源恢复时,若RUN输入接通,则操作自动进行。因此,对一些易过负载的输入设备应设置必要的限流保护电路。
(5)重大故障的报警及防护。对于易发生重大事故的场所,为了确保控制系统在重大事故发生时仍可靠的报警及防护,应将与重大故障有联系的信号通过外电路输出,以使控制系统在安全状况下运行。
当PLC处于正常运行时,它将不断重复扫描过程。分析上述扫描过程,如果对远程I/O、特殊模块和其他通讯服务暂不考虑,这样扫描过程就只剩下“输入采样”、“程序执行”和“输出刷新”三个阶段了。这三个阶段是PLC工作过程的中心内容,理解透PLC工作过程的这三个阶段是学习好PLC的基础。下面就对这三个阶段进行详细的分析。
(1) 输入采样阶段
PLC在输入采样阶段,首先扫描所有输人端点,并将各输入状态存入相对应的输入映像寄存器中。此时,输入映像寄存器被刷新。接着,进入程序执行阶段和输出刷新阶段,在此阶段输入映像寄存器与外界隔离,无论输入情况如何变化,其内容保持不变,直到下一个扫描周期的输人采样阶段,才重新写入输入端的新内容。所以一般来说,输人信号的宽度要大于一个扫描周期,否则很可能造成信号的丢失。
由此可见,输入映像寄存器的数据完全取决于输入端子上各输入点在上一刷新期间的接通和断开状态。
(2) 程序执行阶段
根据PLC梯形图程序扫描原则,一般来说,PLC按从左到右、从上到下的步骤顺序执行程序。当指令中涉及输入、输出状态时,PLC就从输入映像寄存器中“读入”采集到的对应输入端子状态,从元件映像寄存器“读入”对应元件(“软继电器”)的当前状态。然后,进行相应的运算,运算结果再存入元件映像寄存器中。对元件映像寄存器来说,每一个元件(“软继电器”)的状态会随着程序执行过程而变化。
(3) 输出刷新阶段
在所有指令执行完毕后,元件映像寄存器中所有输出继电器的状态(接通/断开)在输出刷新阶段转存到输出锁存器中,通过输出端子和外部电源,驱动外部负载。
由此可见,输出映像寄存器的数据取决于输出指令的执行,输出锁存器中的数据由上一次输出刷新期间输出映像寄存器中的数据决定,而输出端子的接通和断开状态,完全由输出锁存器决定。
(1)高可靠性
1)所有的I/O 接口电路均采用光电隔离,使工业现场的外电路与PLC 内部电路之间电气上隔离。
2)各输入端均采用R-C滤波器,其滤波时间常数一般为10~20ms。
3)各模块均采用屏蔽措施,以防止辐射干扰。
4)采用性能优良的开关电源。
5)对采用的器件进行严格的筛选。
6)良好的自诊断功能,一旦电源或其他软、硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。
7)大型PLC 还可以采用由双CPU 构成冗余系统或有三CPU 构成表决系统,使可靠性进一步提高。
(2)丰富的I/O 接口模块
PLC针对不同的工业现场信号,如:
• 交流或直流;
• 开关量或模拟量;
• 电压或电流;
• 脉冲或电位;
• 强电或弱电等。
有相应的I/O 模块与工业现场的器件或设备,如:
• 按钮
• 行程开关
• 接近开关
• 传感器及变送器
• 电磁线圈
• 控制阀
直接连接另外为了提高操作性能,它还有多种人-机对话的接口模块;为了组成工业局部网络,它还有多种通讯联网的接口模块,等等。
(3)采用模块化结构
为了适应各种工业控制需要除了单元式的小型PLC 以外绝大多数PLC 均采用模块化结构PLC 的各个部件包括CPU 电源I/O 等均采用模块化设计由机架及电缆将各模块连接起来系统的规模和功能可根据用户的需要自行组合。
(4)编程简单易学
PLC的编程大多采用类似于继电器控制线路的梯形图形式对使用者来说不需要具备计算机的专门知识因此很容易被一般工程技术人员所理解和掌握。
(5)安装简单维修方便
PLC不需要专门的机房可以在各种工业环境下直接运行使用时只需将现场的各种设备与PLC 相应的I/O 端相连接即可投入运行各种模块上均有运行和故障指示装置便于用户了解运行情况和查找故障。由于采用模块化结构因此一旦某模块发生故障用户可以通过换模块的方法使系统迅速恢复运行 。
6ES72111BE400XB0 | CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI |
6ES72111AE400XB0 | CPU 1211C DC/DC/DC,6输入/4输出,集成2AI |
6ES72111HE400XB0 | CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI |
6ES72121BE400XB0 | CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI |
6ES72121AE400XB0 | CPU 1212C DC/DC/DC,8输入/6输出,集成2AI |
6ES72121HE400XB0 | CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI |
6ES72141BG400XB0 | CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI |
6ES72141AG400XB0 | CPU 1214C DC/DC/DC,14输入/10输出,集成2AI |
6ES72141HG400XB0 | CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI |
6ES72151BG400XB0 | CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72151AG400XB0 | CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6ES72151HG400XB0 | CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72171AG400XB0 | CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO |