ET 200iSP 是一种模块化、本质安全型 I/O 系统,防护等级为 IP30,可以在环境温度范围为 -20 至 +70 °C 的气体和粉尘环境中运行。它已针对与 SIMATIC PCS 7 和 SIMATIC S7 配合使用进行了优化,但也可以通过 GSD文件集成在其它系统中,如 SIMATIC S5。
根据 ATEX 指令 2014/34/EU,可以将 ET200iSP 远程 I/O 站直接安装在防爆区域 1、2、21 或 22 中以及非危险区域内。必要时,还可以在 zone 0 或 20 中安装本质安全传感器、执行器和 HART 现场设备。
ET 200iSP 采用模块化设计,可根据相应的自动化任务,通过各种组态和灵活扩展调整远程 I/O 站。为了提高工厂利用率,站的压力封装电源和本质安全型 PROFIBUS DP 连接 (RS 485-iS) 也可以采用冗余设计。
采用硬编码和自动插槽编码的现代架构支持不使用电子模块进行预接线,在没有防火证书的情况下对各模块进行简单而可靠的热插拔,以及运行中的组态 (CiR)。
除了用于实现过程工艺(基本过程控制)自动化的模拟量和数字量 I/O 模块之外,该系列电子模块还包含用于实现安全应用的故障安全 F-I/O 模块。各种类型的电子模块可以在站内混合布置。完备的诊断选择,促进了试运行和故障解决
ET 200iSP 分布式 I/O 系统的主要部件:
端子扩展模块
安装在 S7‑300 导轨上;以用于连接电源、接口、电子器件、监测模块和备用模块并用于预布线
带适用于危险环境中的蓝色螺旋型或弹簧承载型端子
带适用于非危险环境中的黑色螺旋型端子
电源装置
1 个或 2 个(冗余)电源模块 PS,带有用于 24 V 直流和 120/230 V 交流供电的正压外壳。
接口模块
1 个或 2 个(冗余)IM 152 接口模块,用于将站连接到 PROFIBUS DP
电子模块(2 个/4 个/8 个通道):多 32 个(任何组合)
数字量电子模块 (DI,DO)
模拟量电子模块 (AI,AO)
安全相关电子模块(F-DI、F-DO 和 F-AI)
模块
附件
占位模块,用于为任意电子模块预留插槽
端子模块(包含在 PROFIBUS 接口的端子模块的供货范围内)
带有可打印标签带的标签纸
用于插槽编号的标签
组装快速而简单:
将终端模板卡到 S7‑300 导轨上
使用弹簧型端子或螺钉型端子将过程信号电缆预接到端子模块上
插入电源、接口和电子模块,*使用附加工具
在带有 32 个电子模块的大组态中,站宽度为 107 cm。
每个站可用电子模块的大数目是有限的,具体取决于完成自动化任务所需的模块的电流消耗。但是,在不受限制的情况下,多可使用 16 个电子模板。
如果将 ET 200iSP 在危险区域中使用,则必须将其安装在防爆外壳中,其防护等级至少为 IP54。在“不锈钢外壳”一节中介绍了防护等级为 IP65 的外壳。
可以不使用电子模块,事先安装和测试接线(独立接线)
借助机械和电子系统的隔离以及独立的过程连线,可以快速、轻松地换电子模块
**将电子模块插入到端子模块中时进行机械编码,可防止替换模块连接错误
可以在没有消防证书的情况下,对电源模板和电子模板进行热插拔
分布式 ET 200iSP 站通过 PROFIBUS DP 连接到 SIMATIC PCS 7 自动化站(控制器),到 Ex zone 1 的连线中使用了一个隔离变压器(RS485‑iS 耦合器)以保持本质安全性。数据传输速度高可达到 1.5 Mbit/s。
ET 200iSP 通过标准的驱动程序块集成到 SIMATIC PCS 7 中。因此,您可以非常简单地使用 HW Config 在工程组态系统的 SIMATIC Manager 中组态 ET 200iSP。此外也支持系统功能 CiR(运行中组态),可以在运行过程中对组态进行如下改:
添加 ET 200iSP 站
将模块添加到 ET 200iSP 站中
重新组态模块
用 SIMATIC PDM 对连接的 HART 现场设备设置参数
供应商特定信息和维护数据能够以防止电源故障的方式保存在电子模块上。
现有的标准诊断驱动程序可对由内部或外部故障(如断线或短路)生成的诊断消息以及所连接的 HART 现场设备的状态消息进行预先处理,这些现场设备位于主操作员站和 PCS 7 资产管理的维护站中。
ET 200iSP 和 HART 现场设备也可通过 SIMATIC PDM(过程设备管理器)进行组态。通过 SIMATIC PDM,您可借助于 PROFIBUS DP 路由来访问 ET 200iSP 上的 HART 现场设备。
在 SIMATIC S7/SIMATIC PCS 7 环境中,可通过 HW Config 对 ET 200iSP 站进行组态和参数设置。使用过程设备管理器 (SIMATIC PDM),也可以设置 ET 200iSP 站和 HART 现场设备的参数。借助于 PROFIBUS DP 路由,可通过 SIMATIC PDM 直接访问 ET 200iSP 上的 HART 现场设备。
也可以通过系统功能 CiR(运行中进行组态)来组态 SIMATIC PCS 7 并可以在运行期间改组态:
添加 ET 200iSP 站
将模块添加到 ET 200iSP 站中
重新组态模块
用 SIMATIC PDM 对连接的 HART 现场设备设置参数
SIMATIC PCS 7 环境:SIMATIC PCS 7 版本 6.1
SIMATIC S7 环境:SIMATIC STEP 7 V5.3+SP1(含硬件支持包 (HSP))或 SIMATIC STEP 7 (TIA Portal)
新 SIMATIC PDM 版本用于组态 HART 现场设备。
站的设计(组态)应根据 GSD 文件并通过 PROFIBUS DP 网络来发布。
组态时需使用过程设备管理器 SIMATIC PDM。例如,过程设备管理器可用来定义模拟量模块的报警限值、数字量模块的信号编码器以及用于输出模拟值及模拟量 HART 模块的 HART 命令的设置。
1、plc的基本概念
可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。
2、PLC的基本结构
PLC实质是一种**于工业控制的计算机,其硬件结构基本上与微型计算机相同:
a. *处理单元(CPU)
*处理单元(CPU)是PLC的控制**。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。
为了进一步提高PLC的可*性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。
b、存储器
存放系统软件的存储器称为系统程序存储器。
存放应用软件的存储器称为用户程序存储器。
C、电源
PLC的电源在整个系统中起着十分重要得作用。如果没有一个良好的、可*得电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去。
3、PLC的工作原理
一. 扫描技术
当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
(一) 输入采样阶段
在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
(二) 用户程序执行阶段
在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。
即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
(三) 输出刷新阶段
当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
比较下二个程序的异同:
程序1:
程序2:
这两段程序执行的结果完全一样,但在PLC中执行的过程却不一样。
※ 程序1只用一次扫描周期,就可完成对%M4的刷新;
※ 程序2要用四次扫描周期,才能完成对%M4的刷新。
这两个例子说明:同样的若干条梯形图,其排列次序不同,执行的结果也不同。另外,也可以看到:采用扫描用户程序的运行结果与继电器控制装置的硬逻辑并行运行的结果有所区别。当然,如果扫描周期所占用的时间对整个运行来说可以忽略,那么二者之间就没有什么区别了。
一般来说,PLC的扫描周期包括自诊断、通讯等,如下图所示,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等所有时间的总和。
二. PLC的I/O响应时间
为了增强PLC的抗干扰能力,提高其可*性,PLC的每个开关量输入端都采用光电隔离等技术。
为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。
以上两个主要原因,使得PLC得I/O响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至长。
所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。其短的I/O响应时间与长的I/O响应时间如图所示:
(n-1)个
扫描周期
短I/O响应时间:
长I/O响应时间
SIEMENS PLC在中国的产品,根据规模和性能的大小,主要有 S7-200 S7-300 和S7-400三种,下面就简单介绍一下该三种产品的一些特性。
S7-200
针对低性能要求的摸块化小控制系统,它多可有7个模块的扩展能力,在模块中集成背板总线,它的网络联接有RS-485通讯接口和Profibus两种,可通过编程器PG访问所有模块,带有电源、CPU和I/O的一体化单元设备。
其中的扩展模块(EM)有以下几种:数字量输入模块(DI)——24VDC 和 120/230VAC;数字量输出(DO)——24VDC 和 继电器;模拟量输入模块(AI)——电压、电流、电阻和热电偶;模拟量输出模块——电压和电流。 还有一个比较特殊的模块-通讯处理器(CP)——该块的功能是可以把S7-200作为主站连接到AS-接口(传感器和执行器接口),通过AS-接口的从站可以控制多达248个设备,这样就可以显著的扩展S7-200的输入和输出点数。
CPU设计
有3种手动选择操作模式:STOP——停机模式,不执行程序;TERM——运行程序,可以通过编程器进行读/写访问;RUN——运行程序,通过编程器仅能进行读操作。
状态指示器(LED):SF——系统错误或(和)CPU内部错误;RUN——运行模式,绿灯;STOP——停机模式,黄灯;DP——分布式I/O(仅对CPU-215)。
存储器卡——用来在没电的情况下不需要电池就可以保存用户程序。PPI口用来连接编程设备、文本显示器或其他CPU。
S7-300
相比较S7-200,S7-300针对的是中小系统,他的模块可以扩展多达32个模块,背板总线也在模块内集成,它的网络连接已比较成熟和流行,有MPI(多点接口)、Profibus和工业以太网,使通讯和编程变的简单和多选性,并可以借助于HWConfig工具可以进行组态和设置参数。
S7-300的模块稍微多一点,除了信号模块(SM)和200的EM模块同类型之外,它还有接口模块(IM)——用来进行多层组态,把总线从一层传到另一层;占位模块(DM)——为没有设置参数的信号模块保留一个插槽或为以后安装的接口模块保留一个插槽;功能模块(FM)——执行特殊功能,如计数、定位、闭环控制相当于对CPU功能的一个扩展或补充;通讯处理器(CP)——提供点对点连接、Profibus和工业以太网。
CPU设计
模式选择器有:MRES=模块复位功能;STOP=停止模式,程序不执行;RUN=程序执行,编程器只读操作;RUN-P=程序执行,编程器可读写操作。
状态指示器:SF,BATF=电池故障;DC5V=内部5 V DC电压指示;FRCE=表示至少有一个输入或输出被强制;RUN=当CPU启动时闪烁,在运行模式下常亮;STOP=在停止模式下常亮,有存储器复位请求时慢速闪烁,正在执行复位时快速闪烁。
MPI接口用来连接到编程设备或其他设备,DP接口用来直接连接到分布式I/O。
S7-400
同300的区别主要?--*婺:托阅苌细看螅舳嘈陀欣淦舳–RST)和热启动(WRST)之分,其他基本一样。哦,它还有一个外部的电池电源接口,当在线换电池时可以向RAM提供后备电源。
编程设备
编程设备主要有PG720 PG740 PG760——可以理解成装有编程软件的手提电脑;也可以直接用安装有STEP7(SIEMENS的编程软件)的PC来完成。而实现通讯(要编程首先要和PLC的CPU通讯上)的要求主要在于接口:1.可以在PC上装CP5611卡——上面有MPI口,可用电缆直接连接。2.加个PC适配器,把MPI口转换成RS-232口后接到PC上。3.PLC加CP343卡,使它具有以太网口。