7
三点支支承是静态确定的,可为任何应用提供稳定支撑。
如果有三个以上支承点,那么载荷的分布可能不均匀,在端情况下,两个对角布置的称重传感器必须要承受整个载荷。因此,应尽可能采用三点支承。
为了排除可能不均匀的底座,对于采用三个以上称重传感器的支承方式,将检查相关称重传感器上的主导重量分布,如有必要,进行高度调整。可以使用适当支架来抬升承载较小重量的称重传感器,从而实现支承均匀。
如果一种部分载荷通过称重传感器传递到底座上,则会产生力的绕过作用。
力的绕过有各种原因(例如,三方支撑件、摩擦力、应力等)。
必须尽力避免力的绕过作用,因为这会导致测量误差。
额定载荷是在大载荷之下选择的,考虑了中心以及各称重传感器上的载荷分布。通常根据载荷大的称重传感器来选择额定载荷。还需要执行一次检查,以查看称重传感器的静态载荷上是否重叠有动态力。在此情况下,从静态载荷与峰值动态力之和来计算称重传感器的额定载荷。
示例(另请参见配置示例 1) 均匀载荷分布,无动态影响 | |
称重传感器的数目: 空容器重量: 大容量: | 4 1.2 吨(1.18 长吨) 1.8 吨(1.77 长吨) |
总载荷: | 3 吨(2.95 长吨) |
4 个称重传感器各承载 0.75 吨(0.74 长吨)载荷,以确保均匀载荷分布。在称重传感器的选型期间,出于安全原因,应向计算的额定载荷增加约 20%。这样就产生了所需的称重传感器,其额定载荷为 0.75 吨 × 1.2 = 0.9 吨(0.74 长吨 x 1.2 = 0.89 长吨)。
因此可得出结论,需要选择下一个大额定载荷水平:1 吨(0.98 长吨)。

PLC采用循环扫描的工作方式,在PLC中用户程序按先后顺序存放,CPU从一条指令开始执行程序,直到遇到结束符后又返回一条,如此周而复始不断循环。PLC的扫描过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。全过程扫描一次所需的时间称为扫描周期。当PLC处于停状态时,只进行内部处理和通信操作服务等内容。在PLC处于运行状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作。
1.输入处理
输入处理也叫输入采样。在此阶段,顺序读入所有输入端子的通端状态,并将读入的信息存入内存中所对应的映象寄存器。在此输入映象寄存器被刷新。接着进入程序执行阶段。在程序执行时,输入映象寄存器与外界隔离,即使输入信号发生变化,其映象寄存器的内容也不会发生变化,只有在下一个扫描周期的输入处理阶段才能被读入信息。
2.程序执行
根据PLC梯形图程序扫描原则,按先左后右先上后下的步序,逐句扫描,执行程序。遇到程序跳转指令,根据跳转条件是否满足来决定程序的跳转地址。从用户程序涉及到输入输出状态时,PLC从输入映象寄存器中读出上一阶段采入的对应输入端子状态,从输出映象寄存器读出对应映象寄存器,根据用户程序进行逻辑运算,存入有关器件寄存器中。对每个器件来说,器件映象寄存器中所寄存的内容,会随着程序执行过程而变化。
3.输出处理
程序执行完毕后,将输出映象寄存器,即器件映象寄存器中的Y寄存器的状态,在输出处理阶段转存到输出锁存器,通过隔离电路,驱动功率放大电路,使输出端子向外界输出控制信号,驱动外部负载。

PLC的配线主要包括电源接线、接地、I/O接线及对扩展单元的接线等。
(1)电源接线与接地
PLC的工作电源有120/230V单相交流电源和24V直流电源。系统的大多数干扰往往通过电源进入PLC,在干扰强或可靠性要求高的场合,动力部分、控制部分、PLC自身电源及I/O回路的电源应分开配线,用带屏蔽层的隔离变压器给PLC供电。隔离变压器的一次侧好接380V,这样可以避免接地电流的干扰。输入用的外接直流电源好采用稳压电源,因为整流滤波电源有较大的波纹,容易引起误动作。
良好的接地是抑制噪声干扰和电压冲击保证PLC可靠工作的重要条件。PLC系统接地的基本原则是单点接地,一般用*自的接地装置,单独接地,接地线应尽量短,一般不过20m,使接地点尽量靠近PLC。
² ² 交流电源接线安装如图42所示。说明如下:
1用一个单开关a将电源与CPU 所有的输入电路和输出(负载)电路隔开。
2用一台过流保护设备b以保护CPU 的电源输出点以及输入点,也可以为每个输出点加上保险丝。
3当使用Micro PLC 24VDC 传感器电源c时可以取消输入点的外部过流保护,因为该传感器电源具有短路保护功能。
4将S200 的所有地线端子同近接地点d相连接以提高抗干扰能力。所有的接地端子都使用14 AWG或1.5mm2 的电线连接到独立接地点上(也称一点接地)。
5本机单元的直流传感器电源可用来为本机单元的直流输入e,扩展模块f,以及输出扩展模块g供电。传感器电源具有短路保护功能。
6在安装中如把传感器的供电M端子接到地上h可以抑制噪声。
² ² 直流电源安装如图43所示。说明如下:
1用一个单开关a,将电源同CPU 所有的输入电路和输出(负载)电路隔开。
2用过流保护设备b、c、d,来保护CPU 电源、输出点,以及输入点。或在每个输出点加上保险丝进行过流保护。当使用Micro 24VDC 传感器电源时不用输入点的外部过流保护。因为传感器电源内部具有限流功能。
3用外部电容e来保证在负载突变时得到一个稳定的直流电压。
4在应用中把所有的DC 电源接地或浮地f(即把全机浮空,整个系统与大地的绝缘电阻不能小于50兆欧)可以抑制噪声,在未接地DC 电源的公共端与保护线PE之间串联电阻与电容的并联回路g ,电阻提供了静电释放通路,电容提供高频噪声通路。常取R=1M ,C=4700pf。
5将S200 所有的接地端子同近接地点h连接,采用一点接地,以提高抗干扰能力。
624V 直流电源回路与设备之间,以及120/230V交流电源与危险环境之间,必须进行电气隔离。
(2)I/O接线和对扩展单元的接线
可编程控制器的输入接线是指外部开关设备PLC的输入端口的连接线。输出接线是指将输出信号通过输出端子送到受控负载的外部接线。
I/O接线时应注意:I/O线与动力线、电源线应分开布线,并保持一定的距离,如需在一个线槽中布线时,须使用屏蔽电缆;I/O线的距离一般不过300m;交流线与直流线,输入线与输出线应分别使用不同的电缆;数字量和模拟量I/O应分开走线,传送模拟量I/O线应使用屏蔽线,且屏蔽层应一端接地。
PLC的基本单元与各扩展单元的连接比较简单,接线时,先断开电源,将扁平电缆的一端插入对应的插口即可。PLC的基本单元与各扩展单元之间电缆传送的信号小,频率高,易受干扰。因此不能与其他连线敷设在同*槽内。

下面从7个方面对PLC与计算机的性能和价格进行相比较:
① 应用范围:微机除了用在控制领域外,还大量用于科学计算、数据处理、计算机通信等方面。而PLC主要用于工业控制。
② 使用环境:微机对环境要求较高,一般要在干扰小、具有一定的温度和湿度要求的机房内使用。而PLC适应于工程现场的环境。
③ 输入输出:微机系统的I/O设备与主机之间采用微电联系,一般不需要电气隔离。而PLC一般控制强电设备,需要电气隔离,输入输出均用“光–电”耦合,输出还采用继电器,可控硅或大功率晶体管进行功率放大。
④ 程序设计:微机具有丰富的程序设计语言,例如汇编语言,FORTRAN语言、COBOL语言、PASCAL语言、C语言等,其语句多,语法关系复杂,要求使用者必须具有一定水平的计算机硬件和软件知识。而PLC提供给用户的编程语句数量少,逻辑简单,易于学习和掌握。
⑤ 系统功能:微机系统一般配有较强的系统软件,例如操作系统,能进行设备管理、文件管理、存储器管理等。它还配有许多应用软件,以方便用户。而PLC一般只有简单的监控程序,能完成故障检查、用户程序的输入和修改、用户程序的执行与监视等功能。
⑥ 运算速度和存储容量:微机运算速度快,一般为微秒级。因有大量的系统软件和应用软件,故存储容量大。而PLC因接口的响应速度慢而影响数据处理速度。一般接口响应速度为2 ms,PLC巡回速度为每千字8 ms。PLC的指令少,编程也简短,故内存容量小。
⑦ 价格:微机是通用机,功能完善,故价格较高。而PLC是**机,功能较少,其价格是微机的十分之一左右。
| 6ES7288-1SR20-0AA1 | S7-200 SMART,CPU SR20,标准型 CPU 模块,继电器输出,220 V AC 或110 DC供电,12 输入/8 输出 |
| 6ES7288-1ST20-0AA1 | S7-200 SMART,CPU ST20,标准型 CPU 模块,晶体管输出,24 V DC 供电,12 输入/8 输出 |
| 6ES7288-1SR30-0AA1 | S7-200 SMART,CPU SR30,标准型 CPU 模块,继电器输出,220 V AC 或110 DC供电,18 输入/12 输出 |
| 6ES7288-1ST30-0AA1 | S7-200 SMART,CPU ST30,标准型 CPU 模块,晶体管输出,24 V DC 供电,18 输入/12 输出 |
| 6ES7288-1SR40-0AA1 | S7-200 SMART,CPU SR40,标准型 CPU 模块,继电器输出,220 V AC或110 DC 供电,24 输入/16 输出 |
| 6ES7288-1ST40-0AA1 | S7-200 SMART,CPU ST40,标准型 CPU 模块,晶体管输出,24 V DC 供电,24 输入/16 输出 |
| 6ES7288-1SR60-0AA1 | S7-200 SMART,CPU SR60,标准型 CPU 模块,继电器输出,220 V AC 或110 DC供电,36 输入/24 输出 |
| 6ES7288-1ST60-0AA1 | S7-200 SMART,CPU ST60,标准型 CPU 模块,晶体管输出,24 V DC 供电,36 输入/24 输出 |
| 6ES7288-1CR20s-0AA1 | S7-200 SMART,CPU CR20s,经济型 CPU 模块,继电器输出,220 V AC或110 DC 供电,12 输入/8 输出 |
| 6ES7288-1CR30s-0AA1 | S7-200 SMART,CPU CR30s,经济型 CPU 模块,继电器输出,220 V AC或110 DC 供电,18 输入/12 输出 |
| 6ES7288-1CR40s-0AA1 | S7-200 SMART,CPU CR40s,经济型 CPU 模块,继电器输出,220 V AC或110 DC 供电,24 输入/16输出 |
| 6ES7288-1CR60s-0AA1 | S7-200 SMART,CPU CR60s,经济型 CPU 模块,继电器输出,220 V AC或110 DC 供电,36 输入/24 输出 |