PLC的普通定时器的工作与扫描工作方式有关,其定时精度较差。在接通延时定时器的输入信号的上升沿和定时器输出位的上升沿,分别调用SFC1读取CPU中的日期和时间,用IEC功能FC8从其中提取实时时间(TIME_OF_DAY)。设置时间预置值分别为5s和50s,扫描循环时间为10ms。作者做了多次实验,发现定时器的定时误差为1~9ms。
如果需要高精度的延时,应使用延时中断 OB。用 SFC 32“SRT_DINT”启动延时中断,延迟时间为1~60000ms,精度为1ms。延时时间到时触发中断,调用SFC32*的OB。CPU316 及以下的 CPU 只能使用 OB20,暖启动或冷启动将延时中断 OB的启动事件。
1.硬件组态
用新建项目向导生成一个名为“OB20例程”的项目(见随书光盘中的同名例程),CPU模块的型号为CPU 315-2DP。打开硬件组态工具HW Config,将硬件目录中名为“DI4xNAMUR,Ex”的4点DI模块插入4号槽,自动分配的DI模块的字节地址为0。双击该模块,打开它的属性对话框(见图4-47)。用复选框启用硬件中断,设置I0.0产生上升沿中断。在5号槽插入一块16点DO模块。
2.程序设计
在10.0的上升沿触发硬件中断,CPU调用OB40,在OB40中调用SFC32“SRT_DINT”启动延时中断(见图4-51),延时时间为10s。从LD12开始的8B临时局部变量是调用OB40的日期时间值,用MOVE指令将其中的后4个字节LD16保存到MD20。
图4-51 OB40中的程序
10s后延时时间到,CPU调用SFC 32*的OB20。在OB20中用MOVE指令保存调用OB20的日期时间值的后4个字节(见图4-52)。同时将Q4.0置位,并通过P4立即输出。
图4-52 OB20中的程序
可以用I0.2将Q4.0复位(见图4-53)。在OB1中调用SFC34“QRY_DINT”来查询延时中断的状态字STATUS,查询的结果用MW8保存,其低字节为MB9。OB_NR的实参是延时中断 OB的编号,RET_VAL为SFC 执行时的错误代码,为0时无错误。
图4-53 OB1中的程序
在延时过程中,可以在10.1的上升沿调用SFC33“CAN_DINT”来取消延时中断过程。
3.实验
打开软件PLCSIM,将程序和组态信息下载到PLC。切换到RUN-P模式时,M9.4马上变为1状态,表示OB20已经下载到了CPU中。
执行PLCSIM的菜单命令“Execute”→“TriggerErrorOB”→“Hardware Interrupt (OB40-OB47)…”(见图4-49),在“Hardware Interrupt OB(40-47)”对话框中,输入DI模块的起始字节地址0和模块内的位地址0。单击“Apply”按钮,I0.0产生硬件中断,CPU调用OB40,M9.2变为1状态,表示正在执行SFC32启动的时间延时。
在SIMATIC管理器中生成变量表(见图4-54),单击工具栏上的剑按钮,启动监控功能。MD20是在OB40中读取的BCD格式的时间值(25分9秒643毫秒),后1位为星期的代码,5表示星期4。
图4-54 变量表
10s的延时时间到时,CPU调用OB20,M9.2变为0状态,表示延时结束。OB20中的程序将Q4.0置位为1状态(见图4-52),并且用MOVE指令立即写入D0模块。可以用10.2复位Q4.0(见图4-53)。在OB20中保存在MD24的实时时间值为25分19秒643毫秒,与OB40中保存在MD20的时间值相减,可知定时精度是相当高的。
在延时过程中用软件将I0.1 置位为1,M9.2变为0状态,表示0B20的延时被取消,定时时间到不会调用0B20。
PLC的容量选择两个方面的技巧
PLC的容量选择 PLC的容量包括I/O点数和用户存储容量两个方面。
1.I/O点数
PLC的I/O点的价格还比较高,因此应该合理选用PLC的I/O点的数量,在满足控制要求的前提下力争使用I/O点少,但必须留有一定的备用量。通常I/O点数是根据被控对象的输入、输出信号的实际需要,再加上10%-15%的备用量来确定。
2.用户存储容量
用户存储容量是指PLC用于存储用户程序的存储器容量。需要的用户存储容量的大小由用户程序的长短决定。
一般可按下式估算,再按实际需要留适当的余量(20%-30%)来选择。
存储容量=开关量I/O点总数X10十模拟量通道数X100绝大部分PLC均能满足上式要求。应当要注意的是:当控制系统较复杂。数据处理量较大时,可能会出现存储容量不够的问题,这时应对待。
6ES72111BE400XB0 | CPU 1211C AC/DC/Rly,6输入/4输出,集成2AI |
6ES72111AE400XB0 | CPU 1211C DC/DC/DC,6输入/4输出,集成2AI |
6ES72111HE400XB0 | CPU 1211C DC/DC/Rly,6输入/4输出,集成2AI |
6ES72121BE400XB0 | CPU 1212C AC/DC/Rly,8输入/6输出,集成2AI |
6ES72121AE400XB0 | CPU 1212C DC/DC/DC,8输入/6输出,集成2AI |
6ES72121HE400XB0 | CPU 1212C DC/DC/Rly,8输入/6输出,集成2AI |
6ES72141BG400XB0 | CPU 1214C AC/DC/Rly,14输入/10输出,集成2AI |
6ES72141AG400XB0 | CPU 1214C DC/DC/DC,14输入/10输出,集成2AI |
6ES72141HG400XB0 | CPU 1214C DC/DC/Rly,14输入/10输出,集成2AI |
6ES72151BG400XB0 | CPU 1215C AC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72151AG400XB0 | CPU 1215C DC/DC/DC,14输入/10输出,集成2AI/2AO |
6ES72151HG400XB0 | CPU 1215C DC/DC/Rly,14输入/10输出,集成2AI/2AO |
6ES72171AG400XB0 | CPU 1217C DC/DC/DC,14输入/10输出,集成2AI/2AO |